

Create "Matt"

Consumer Provider

Background: Contract tests are not functional tests

Create "Matt"

Yes

Consumer Provider

Background: Contract tests are not functional tests

Create "Matt"

Yes

Consumer Provider
No

Background: Contract tests are not functional tests

Create "Matt"

Yes

Consumer Provider
No

No

Background: Contract tests are not functional tests

Create "Matt"

Consumer Provider
No

No

Background: Contract tests are not functional tests

Create "Matt"

Consumer { Provider

"error": "Username already taken"

}

Background: Contract tests are not functional tests

Create "Matt"

Provider
"error'": "Username already taken"

"error'": "Username is not allowed to have capital letters"

}

Background: Contract tests are not functional tests

(With this calling cod
Consumer test: Here is mylrESE
| will generate this request
Here is th
response you
And that unmarshall
as | expect

Pact: That's what yc¢

Consumer test:
When the provider is in state X { W
said you'd send!

Consumer test:
| expect this response

const username = 'Matt';

const expectedResponseBody = {
error: like('The username Matt is already taken'),

}:

beforeEach(() =>

Consumer test: :> provider.addInteraction({
uponReceiving: 'A request to create the user "Matt"',

| will generate this request

(Consumer test:

withRequest: {
method: 'POST’',
path: '/users',
body: { username },
},
state: 'Username Matt is invalid’,
willRespondWith: {
status: 400,
body: expectedResponseBody,
}l

When the provider is in state X

Consumer test:
| expect this response

A

< With this calling code

const expectedResponseObject = extractPayload(expectedResponseBody); Here is my request ::)

Debug

o it('works', () =>

api(provider.mockService.baseUrl) Pact: That's what you
.createUser(username) said you'd send!)

.then((response) => {

expect(response).toEqual{expectedResponselbject);

}); Here is the
response you expect
And that unmarshalls
as | expect

api(provider.mockService.baselUrl)

Here is my

Pact: That's what

LNer

.createUser(username)

Here is my request)

api(provider.mockService.baselUrl)
With this calling code

Pact: That's what you
said you'd send!

.then((response) => {

expect(response).toEqual(expectedResponselbject);

RN Here is the
response you expect

And that unmarshalls
as | expect

.then((response) => {

expect(response).toEqual{expectedResponselbject);

»);

api(provider.mockService.baseUrl)

< With this calling code .createUser(username)

const expectedResponseObject = extractPayload(expectedResponseBody); Here is my request ::)

Debug

o Tt works' s [} ==
api(provider.mockService.baselUrl) Pact: That's what you
.createUser(username) said you'd send!)
.then((response) => {
expect(response).toEqual(expectedResponselbject);

RN Here is the
response you expect

And that unmarshalls
as | expect

.then((response) => {

expect(response).toEqual{expectedResponselbject);

»);

const username = 'Matt';

const expectedResponseBody = {
error: like('The username Matt is already taken'),

}:

beforeEach(() =>
provider.addInteraction({

uponReceiving: 'A request to create the user "Matt"',
withRequest: {

method: 'POST’',

path: '/users',

body: { username },
}!
state: 'Username Matt is invalid’,
willRespondWith: {

status: 400,

body: expectedResponseBody,

const expectedResponseObject = extractPayload(expectedResp

Debug
o it{‘works‘', () =
api(provider.mockService.baseUrl)
.createUser(username)
.then((response) => {
expect(response).toEqual{expectedResponselObject);

});

},

1
I
I
Consumer I —>>
I
I

I
I
| Provider
I
I
[T
Unit test Unit test
————= n === 1
| | | |
| I
I Consumer I —> | Provider I
| | | |
| | | |

Background: Contract tests are not functional tests

Components

API Pact Contract

API Controllers

Service

Repo

Components API Pact Contract API Controllers Service Repo

L o e e o — — — — — — — — —]

So:
Contract tests are not

But:
It is good if they have fu

[———— i — — — — —

Components

Pact Contract

b o e e — — — — — — — —]

Service

Repo

[— — —

Components

Pact Contract

b o e o o o — — — — — — — — —]

Service

Repo

Components

Pact Contract

R —

Service

Repo

Test qua
Connecting the tests an

Components

Pact Contract

R —

Service

Repo

address.pact.fixtures.js
export const createUserResponseBody = {
error: like('The username Matt is already taken'),

i

export const createUserFailure = extractPayload(createUserResponseBody);

address.pact.fixtures.js
export const createUserResponseBody = {
error: like('The username Matt is already taken'),

export const createUserFailure = extractPayload(createUserResponseBody);

willRespondWith: {
status: 400,
body: createUserResponseBody,
},
})
);
address.spec.pact.js
Debug
o it('works', () =>
api(provider.mockService.baseUr1)
.createUser(username)
.then((response) => {
expect(response).toEqual(createUserFailure);

}));

address.pact.fixtures.js
export const createUserResponseBody = {
error: like('The username Matt is already taken'),

i

export const createUserFailure = extractPayload(createUserResponseBody);

<wherever you need a mock>.spec.js

export const mockApi = {

createUser: jest.fn().mockResolvedValue(createUserFailure),

o

const createUserResponseBody = {
error: like('The username Matt is already taken'),

i

export const pactResponses =
createUserFailure: {
willRespondWith: {

status: 400,
body: createUserResponseBody,

export const createUserFailure = extractPayload(createUserResponseBody);

beforeEach(() =>
provider.addInteraction({
uponReceiving: 'A request to create the user "Matt"',
withRequest: {
method: 'POST’,
path: '/users',

body: { username },
}l
state: 'Username Matt is invalid’',
. . . pactResponses.createUserFailure,

const requestToCreateUserMatt = {
uponReceiving: 'A request to create the user "Matt"',
withRequest: {
method: 'POST',

path: '/users',
body: { username },

const requestToCreateUserMatt = {
uponReceiving: 'A request to create the user "Matt"',
withRequest: {
method: 'POST',
path: '/users',
body: { username },

beforeEach(() =>
provider.addInteraction({
..« requestToCreateUserMatt,
state: 'Username Matt is invalid’,
. . . pactResponses.createUserFailure,

Contentiou

| suspect URLs like /v

)

(commit

What is a
breaking
change?

"error": "Username 1s not allowed to have capital letters"

}

"error": "Username is not allowed to have capital letters",
""code": "BAD_REQUEST",
"context": {

"file": "UserService.java",
"line": "34"

)

(commit

Consumer name

Provider name

v0.1.0-e8bd84f0

pact
content

v1.0.0-abeb0al

v0.1.1-fe29bbf8

v0.2.0-0e77440b

v2.0.0-4c5e501

v2.0.1-cb0d80a

pact
content

)

commit

o)

R —

Version 1

>

commit

<

-

<

Version 2

commit

-

o/

<

)

Version 3

>

commit

n

O/

Version 4

commit 1
I'4

commit 2/

commit 3

commit 4

» Build 1
» Build 2
» Build 3

Build 4

\

\

Build 5

<valid semver>

<version core>

<version
<version
<version

<version

<ma‘jor>

core>
core>
core>

core>

ll+ll

<pre-release>
<build>

<pre-release> "+" <build>

." <minor> "." <patch>

Contentious
| suspect URLs like /v1

Solutio
Nice versions fro

<pre-release> ::= <dot-separated pre-release identifiers>

<dot-separated pre-release identifiers> ::= <pre-release identifier>

| <pre-release identifier> "." <dot-sepa.
<build> ::= <dot-separated build identifiers>

<dot-separated build identifiers> ::= <build identifier>
| <build identifier> "." <dot-separated build

<pre-release identifier> ::= <alphanumeric identifier>
| <numeric identifier>

<build identifier> ::= <alphanumeric identifier>
| <digits>

commit 1.2.3

o
v

r v1.2.3

T

<

commit 1.2.3-master+1.ge67510

(o)

<

NN
v

» 1.2.3-master+2.aa37028d

commit

&

<

commit 4 1.3.0

_/
v

(v1.3.0

T

1.3.0+SNAPSHOT.Timothys-MBP

All tests are actuall

What would | like to ask t
Easier co
Better errors fr

Integrated ve

Contract tests aren’t functional
tests, but it’s ok if they have some
functional coverage

Fixtures can tie your api layer
mocks to your api tests

Version consumers and providers
from source code

All tests are actually contract tests

What would you like to ask

What patterns do you use that

