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const username = 'Matt';

const expectedResponseBody = {
error: like('The username Matt is already taken'),

}:

beforeEach(() =>

Consumer test: :> provider.addInteraction({
uponReceiving: 'A request to create the user "Matt"',

| will generate this request

( Consumer test:

withRequest: {
method: 'POST’',
path: '/users',
body: { username },
},
state: 'Username Matt is invalid’,
willRespondWith: {
status: 400,
body: expectedResponseBody,
}l

When the provider is in state X

Consumer test:
| expect this response

A




< With this calling code

const expectedResponseObject = extractPayload(expectedResponseBody); Here is my request ::)

Debug

o it('works', () =>

api(provider.mockService.baseUrl) Pact: That's what you
.createUser(username) said you'd send! )

.then((response) => {

expect(response).toEqual{expectedResponselbject);

}); Here is the
response you expect
And that unmarshalls
as | expect




api(provider.mockService.baselUrl)

Here is my

Pact: That's what

LNer




.createUser(username)

Here is my request )

api(provider.mockService.baselUrl)
With this calling code

Pact: That's what you
said you'd send!

.then((response) => {

expect(response).toEqual(expectedResponselbject);

RN Here is the
response you expect

And that unmarshalls
as | expect

.then((response) => {

expect(response).toEqual{expectedResponselbject);

»);




api(provider.mockService.baseUrl)

< With this calling code .createUser(username)

const expectedResponseObject = extractPayload(expectedResponseBody); Here is my request ::)

Debug

o Tt works' s [} ==
api(provider.mockService.baselUrl) Pact: That's what you
.createUser(username) said you'd send! )
.then((response) => {
expect(response).toEqual(expectedResponselbject);

RN Here is the
response you expect

And that unmarshalls
as | expect

.then((response) => {

expect(response).toEqual{expectedResponselbject);

»);




const username = 'Matt';

const expectedResponseBody = {
error: like('The username Matt is already taken'),

}:

beforeEach(() =>
provider.addInteraction({

uponReceiving: 'A request to create the user "Matt"',
withRequest: {

method: 'POST’',

path: '/users',

body: { username },
}!
state: 'Username Matt is invalid’,
willRespondWith: {

status: 400,

body: expectedResponseBody,

const expectedResponseObject = extractPayload(expectedResp

Debug
o it{‘works‘', () =
api(provider.mockService.baseUrl)
.createUser(username)
.then((response) => {
expect(response).toEqual{expectedResponselObject);

});

},
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address.pact.fixtures.js
export const createUserResponseBody = {
error: like('The username Matt is already taken'),

i

export const createUserFailure = extractPayload(createUserResponseBody);



address.pact.fixtures.js
export const createUserResponseBody = {
error: like('The username Matt is already taken'),

export const createUserFailure = extractPayload(createUserResponseBody);

willRespondWith: {
status: 400,
body: createUserResponseBody,
},
})
);
address.spec.pact.js
Debug
o it('works', () =>
api(provider.mockService.baseUr1)
.createUser(username)
.then((response) => {
expect(response).toEqual(createUserFailure);

}));




address.pact.fixtures.js
export const createUserResponseBody = {
error: like('The username Matt is already taken'),

i

export const createUserFailure = extractPayload(createUserResponseBody);

<wherever you need a mock>.spec.js

export const mockApi = {

createUser: jest.fn().mockResolvedValue(createUserFailure),

o




const createUserResponseBody = {
error: like('The username Matt is already taken'),

i

export const pactResponses =
createUserFailure: {
willRespondWith: {

status: 400,
body: createUserResponseBody,

export const createUserFailure = extractPayload(createUserResponseBody);




beforeEach(() =>
provider.addInteraction({
uponReceiving: 'A request to create the user "Matt"',
withRequest: {
method: 'POST’,
path: '/users',

body: { username },
}l
state: 'Username Matt is invalid’',
. . . pactResponses.createUserFailure,




const requestToCreateUserMatt = {
uponReceiving: 'A request to create the user "Matt"',
withRequest: {
method: 'POST',

path: '/users',
body: { username },




const requestToCreateUserMatt = {
uponReceiving: 'A request to create the user "Matt"',
withRequest: {
method: 'POST',
path: '/users',
body: { username },

beforeEach(() =>
provider.addInteraction({
..« requestToCreateUserMatt,
state: 'Username Matt is invalid’,
. . . pactResponses.createUserFailure,
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"error": "Username 1s not allowed to have capital letters"

}



"error": "Username is not allowed to have capital letters",
""code": "BAD_REQUEST",
"context": {

"file": "UserService.java",
"line": "34"
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commit 3

commit 4

» Build 1
»  Build 2
»  Build 3
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<valid semver>

<version core>

<version
<version
<version

<version

<ma‘jor>

core>
core>
core>

core>

ll+ll

<pre-release>
<build>

<pre-release> "+" <build>

." <minor> "." <patch>
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<pre-release> ::= <dot-separated pre-release identifiers>

<dot-separated pre-release identifiers> ::= <pre-release identifier>

| <pre-release identifier> "." <dot-sepa.
<build> ::= <dot-separated build identifiers>

<dot-separated build identifiers> ::= <build identifier>
| <build identifier> "." <dot-separated build

<pre-release identifier> ::= <alphanumeric identifier>
| <numeric identifier>

<build identifier> ::= <alphanumeric identifier>
| <digits>
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commit
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commit 4 1.3.0
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1.3.0+SNAPSHOT.Timothys-MBP
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Contract tests aren’t functional
tests, but it’s ok if they have some
functional coverage

Fixtures can tie your api layer
mocks to your api tests

Version consumers and providers
from source code

All tests are actually contract tests




What would you like to ask

What patterns do you use that




